Identification	Subject	ETR 580- Materials for Power Electronics 8	ECTS credits		
	(code, title, credits)				
	Department	Physics and Electronics			
	Program	Graduate			
	(undergraduate		ļ		
	•				
	graduate)				
	Term	Fall 2025			
	Instructor	Ahmad Asimov ph.D			
	E-mail:	fizikasimov@gmail.com			
	Phone:	(daxili255)			
	Classroom/hours	302N Monday/Wednesday			
	Office hours	Tuesday: 15:00-16:00/ Thursday: 15:00-1	6:00		
Prerequisites					
Language	English				
Compulsory	Compulsory				
Required textbooks and					
course materials	https://pddh.xaut.edu.cn/ local/E/25/14/F1132C9C735E6D8988EA0BDDBFD CFCDE				
	BE7_22741F4.pdf Muhammad H.Rashid. Power Electronics. Third edition, USA 2016.				
	https://powerunit-ju.com/wp-content/uploads/2016/11/Book.				
	2. Power Electronics Handbook 3rd Edition M Rashid.pdf 2				
	V.Ramanarayanan	. Course on material on Switched mode power	r conversion. Indian Institute		
	of science.2008. E-book pdf Web pages: https://www.electrical4u.com/electrical-				
	engineering-articles/power-electronics/#.				
	3. S. O. Kasap, "Optoelectronics and Photonics: Principles and Practices," <i>Prentice-Hall</i> ,				
Course description	Power electronics is the study of electronic circuits designed to control the flow of electrical				
_	energy. Electronic circuits control the flow of power at levels well above the rated				
	characteristics of individual devices. In general, electronic engineering is the circuits that				
	engineers design and use to convert energy. The goal of modern electronics is to solve				
	problems of reliable and efficient energy. To do this, it is necessary to clarify how electronic				
	circuits and systems can be used to solve problems of energy conversion and control. Course				
	of Power Electronics includes the working principles of converters, inverters, and rectifiers,				
	and their critical role in power electronic systems.				
Student Learning	What students should know by the end of the course: Fundamentdals of Power electronics,				
Objectives/Outcomes		verters and converters, srtucture of power c			
·	logic, swithcing characteristics of SCR, about thyristor protection and gate characteristics,				
	about IGBT and other power converters, sucah as buck and boost converters. Explain				
	classification, properties and characteristics of electrical and electronic engineering materials.				
	Analyse and predict future directions in the use of electronic materials and design of				
	electronic devices. Anderstand and explain the fundamental principles underlying the				
	operation of various electronic devices. Provide an introduction to the processing methods for				
	materials used in the semiconductor industry.				
	On successful completion of this course students will be able to:				
	Describe the characteristics of conducting and semiconducting materials				
	2. Classify and describe different insulators and to explain the behaviors of dielectrics in static				
	and alternating fields				
	4. Solve simple problems based on dielectric, magnetic and conducting materials				
	5. Classify and describe Solar energy materials and superconducting materials				
	6. Discuss classification, properties and characteristics of different electrical engineering				
	materials				
Teaching methods	Lecture	T	+		
Evaluation	Group discussion		+		
~ , mrmmerVII	Group discussion	Date/deadlines	Percentage (%)		
Evaluation	Midterm Exam	Date/ deadines	30		
L, #14#61011	Activity	At each lesson	5		
	Quizzes	2 times during the semester	20		
	Presentation	During the semester	5		
	Final Exam	During the semester	40		
	Total		100		
	10141		100		

Policy Pr

Preparation for class

• The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions.

Withdrawal (pass/fail)

• This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

• Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

• The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Ouizzes

- There will be a quiz examination per two weeks. The quizzes will be announced in the classroom two weeks before. Quiz is from homework problems.
- The homework problems will be selected from questions and problems in the end of each chapter. The No. of homework problems will be announced after finishing each chapter.

Presentation

• There will be a presentation per two weeks. The presentation works will be announced in the classroom two weeks before and will relate to homework.

Activity

• Students who will be active during discussion of past lessons will be awarded with one activity mark.

Tentative Schedule

***/1-	Date/Day	Topics	Textbook
Week	(tentative)		
1	18.09.2025	Fundamentals of Power Electronics Materials	
23.09.2025		Basic Semiconductor Physics and Technology. Classification	Chapter 1
		of Power Electronics Materials. Scope of Electrical and	[1] p. 1-30
		Electronic Materials. Requirements of Engineering Materials	
2	25.09.2025	Semiconductor Materials for Power Devices	Chapter 2
	30.09.2025	Semiconductors Materials: Basic Concept, type of	
		semiconductors, working and applications of semiconductors.	[1] p. 31-80
		Different semiconducting materials used in manufacture of various semiconductor devices (MOSFET technologies and	[1] p. 51 00
		diodes). Wide bandgap semiconductor materials in power	
		electronics	
	02.10.2025	Semiconductor Materials for Power Devices	Chapter 3
3	07.10.2025	Semiconductors Materials: Basic Concept, type of	Chapter 5
	07.10.2023	semiconductors, working and applications of semiconductors.	[1] p. 81-160
		Different semiconducting materials used in manufacture of	
		various semiconductor devices (MOSFET technologies and	
		diodes). Wide bandgap semiconductor materials in power	
		electronics	

	09.10.2025	Silicon materials and applications in Power Electronics	Chapter 4
4 14.10.2025		Physical properties of silicon materials. Structural features.	_
		Chemical, mechanical and thermal features. Electronic and	[1] p. 161-220
		thermal features. Purifying silicon. Crystallinity.	
5	16.10.2025	Silicon materials and applications in Power Electronics	Chapter 5
	21.10.2025	Single crystal silicon. Czochralski process. Multi-crystalline	[1] = 221 220
		Silicon . Amorphous Silicon. Substrates and thin layers of Si.	[1] p. 221-330
		Technological steps for achieving power components.	
6	23.10.2025	Silicon Carbide Applications in Power Electronics	Chapter 6
	28.10.2025	Physical properties of silicon carbide. Structural features.	
		Chemical, mechanical and thermal features. Electronic and	F11 - 221 410
		thermal features. Other "candidates" as semiconductors of	[1] p. 331-410
		power. State of the art technology for silicon carbide power	
_		components. Substrates and thin layers of SiC.	
7	30.10.2025	Silicon Carbide Applications in Power Electronics	Chapter 7
	13.11.2025	Technological steps for achieving power components.	[1] p. 411-460
		Applications of silicon carbide in power electronics	[1] p. 411-400
		(MOSFETs, diodes). SiC components for high frequency	
		power supplies. SiC components for switching systems under	
		high voltage and high power. High energy SiC components for	
		series protection systems. Si and SiC physical and electrical	
0	10 11 2027	properties compared Colling Nitrida (CoN) materials and applications in Payron	Chamtan 9
8	18.11.2025	Gallium Nitride (GaN) materials and applications in Power	Chapter 8
		Electronics	[1] p. 461-520
		Properties of Gallium Nitride (GaN) materials. Structural	
		features. Mechanical, electronic and thermal features.	
		Substrates and thin layers of Gallium Nitride (GaN).	
		Applications of Gallium Nitride (GaN) in power electronics	
		(heteroepitaxy, HEMTs, high-frequency applications, diodes). Midterm exam	
9	20.11.2027		Cl 1
9	20.11.2025	Materials for cooling of power switching semiconductor	Chapter 1
	25.11.2025	devices Thermal resistances	[2] p. 1–40
		Contact thermal resistance	
		Thermal Interface Materials	
		Phase Change Gasket Materials (solid to liquid)	
10		Soft Magnetic Materials - Inductors and Transformers	Chapter 2
10	27 11 2025	Inductor and transformer electrical characteristics	_
	27.11.2025	Magnetic material types	[2] p. 41–96
	02.12.2025	Comparison of material types	
		Ferrite characteristics	
		Power ferrite transformer design	
11	04.12.2025	Hard Magnetic Materials - Permanent Magnet	Chapter 3
	09.12.2025	Magnetic properties	[2] p. 97–160
	07.12.2023	Classification of magnetic materials	[2] p. 57 100
		Properties of hard magnetic materials	
12	11.12.2025	Materials And Devices For Energy Harvesting And Storage	Chapter 4
	16.12.2025	Primary Sources: Hydrocarbon attributes, The fuel cell,	[2] p. 161–220
	10.12.2020	Materials and cell design (Electrodes, Catalyst, Electrolyte,	[2] p. 101 220
		Interconnect, Stack design), Fuel Cell Electrical	
		characteristics.	
13	18.12.2025	Materials And Devices For Energy Harvesting And Storage	Chapter 5
	23.12.2025	Organic photovoltaic cell and organic electronic materials,	[2] p. 221–280
		Secondary Sources: The lead-acid battery, The nickel-	r 11
		cadmium battery, The lithium-ion battery, Thermoelectric	
		modules, Thermoelectric materials	
14	25.12.2025	Nanomaterials and composites in power electronics	Chapter 6
		Introduction and properties, synthesis of nanomaterials,	
		Carbon Nano Tubes, Quantum dots. Photonic crystals.	[2] p. 281–380
		Organic materials. Applications of nanomaterials in modern	
		technology	

The state of the s